The fractal structure of cellular automata on abelian groups
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS, DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS (2010).

Voir la notice de l'article provenant de la source Episciences

It is a well-known fact that the spacetime diagrams of some cellular automata have a fractal structure: for instance Pascal's triangle modulo $2$ generates a Sierpinski triangle. Explaining the fractal structure of the spacetime diagrams of cellular automata is a much explored topic, but virtually all of the results revolve around a special class of automata, whose main features include irreversibility, an alphabet with a ring structure and a rule respecting this structure, and a property known as being (weakly) $p$-Fermat. The class of automata that we study in this article fulfills none of these properties. Their cell structure is weaker and they are far from being $p$-Fermat, even weakly. However, they do produce fractal spacetime diagrams, and we will explain why and how. These automata emerge naturally from the field of quantum cellular automata, as they include the classical equivalent of the Clifford quantum cellular automata, which have been studied by the quantum community for several reasons. They are a basic building block of a universal model of quantum computation, and they can be used to generate highly entangled states, which are a primary resource for measurement-based models of quantum computing.
@article{DMTCS_2010_special_257_a4,
     author = {G\"utschow, Johannes and Nesme, Vincent and Werner, Reinhard F.},
     title = {The fractal structure of cellular automata on abelian groups},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS},
     year = {2010},
     doi = {10.46298/dmtcs.2759},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2759/}
}
TY  - JOUR
AU  - Gütschow, Johannes
AU  - Nesme, Vincent
AU  - Werner, Reinhard F.
TI  - The fractal structure of cellular automata on abelian groups
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2759/
DO  - 10.46298/dmtcs.2759
LA  - en
ID  - DMTCS_2010_special_257_a4
ER  - 
%0 Journal Article
%A Gütschow, Johannes
%A Nesme, Vincent
%A Werner, Reinhard F.
%T The fractal structure of cellular automata on abelian groups
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2759/
%R 10.46298/dmtcs.2759
%G en
%F DMTCS_2010_special_257_a4
Gütschow, Johannes; Nesme, Vincent; Werner, Reinhard F. The fractal structure of cellular automata on abelian groups. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS, DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS (2010). doi : 10.46298/dmtcs.2759. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2759/

Cité par Sources :