A new combinatorial identity for unicellular maps, via a direct bijective approach.
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

We give a bijective operation that relates unicellular maps of given genus to unicellular maps of lower genus, with distinguished vertices. This gives a new combinatorial identity relating the number $\epsilon_g(n)$ of unicellular maps of size $n$ and genus $g$ to the numbers $\epsilon _j(n)$'s, for $j \lt g$. In particular for each $g$ this enables to compute the closed-form formula for $\epsilon_g(n)$ much more easily than with other known identities, like the Harer-Zagier formula. From the combinatorial point of view, we give an explanation to the fact that $\epsilon_g(n)=R_g(n) \mathrm{Cat}(n)$, where $\mathrm{Cat}(n$) is the $n$-th Catalan number and $R_g$ is a polynomial of degree $3g$, with explicit interpretation.
@article{DMTCS_2009_special_256_a69,
     author = {Chapuy, Guillaume},
     title = {A new combinatorial identity for unicellular maps, via a direct bijective approach.},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2747},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2747/}
}
TY  - JOUR
AU  - Chapuy, Guillaume
TI  - A new combinatorial identity for unicellular maps, via a direct bijective approach.
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2747/
DO  - 10.46298/dmtcs.2747
LA  - en
ID  - DMTCS_2009_special_256_a69
ER  - 
%0 Journal Article
%A Chapuy, Guillaume
%T A new combinatorial identity for unicellular maps, via a direct bijective approach.
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2747/
%R 10.46298/dmtcs.2747
%G en
%F DMTCS_2009_special_256_a69
Chapuy, Guillaume. A new combinatorial identity for unicellular maps, via a direct bijective approach.. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2747. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2747/

Cité par Sources :