Counting Quiver Representations over Finite Fields Via Graph Enumeration
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

Let $\Gamma$ be a quiver on $n$ vertices $v_1, v_2, \ldots , v_n$ with $g_{ij}$ edges between $v_i$ and $v_j$, and let $\boldsymbol{\alpha} \in \mathbb{N}^n$. Hua gave a formula for $A_{\Gamma}(\boldsymbol{\alpha}, q)$, the number of isomorphism classes of absolutely indecomposable representations of $\Gamma$ over the finite field $\mathbb{F}_q$ with dimension vector $\boldsymbol{\alpha}$. We use Hua's formula to show that the derivatives of $A_{\Gamma}(\boldsymbol{\alpha}, q)$ with respect to $q$, when evaluated at $q = 1$, are polynomials in the variables $g_{ij}$, and we can compute the highest degree terms in these polynomials. The formulas for these coefficients depend on the enumeration of certain families of connected graphs. This note simply gives an overview of these results; a complete account of this research is available on the arXiv and has been submitted for publication.
@article{DMTCS_2009_special_256_a64,
     author = {Helleloid, Geir and Rodriguez-Villegas, Fernando},
     title = {Counting {Quiver} {Representations} over {Finite} {Fields} {Via} {Graph} {Enumeration}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2742},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2742/}
}
TY  - JOUR
AU  - Helleloid, Geir
AU  - Rodriguez-Villegas, Fernando
TI  - Counting Quiver Representations over Finite Fields Via Graph Enumeration
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2742/
DO  - 10.46298/dmtcs.2742
LA  - en
ID  - DMTCS_2009_special_256_a64
ER  - 
%0 Journal Article
%A Helleloid, Geir
%A Rodriguez-Villegas, Fernando
%T Counting Quiver Representations over Finite Fields Via Graph Enumeration
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2742/
%R 10.46298/dmtcs.2742
%G en
%F DMTCS_2009_special_256_a64
Helleloid, Geir; Rodriguez-Villegas, Fernando. Counting Quiver Representations over Finite Fields Via Graph Enumeration. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2742. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2742/

Cité par Sources :