Ordered Vertex Partitioning
Discrete mathematics & theoretical computer science, Tome 4 (2000-2001) no. 1.

Voir la notice de l'article provenant de la source Episciences

A transitive orientation of a graph is an orientation of the edges that produces a transitive digraph. The modular decomposition of a graph is a canonical representation of all of its modules. Finding a transitive orientation and finding the modular decomposition are in some sense dual problems. In this paper, we describe a simple O(n + m \log n) algorithm that uses this duality to find both a transitive orientation and the modular decomposition. Though the running time is not optimal, this algorithm is much simpler than any previous algorithms that are not Ω (n^2). The best known time bounds for the problems are O(n+m) but they involve sophisticated techniques.
@article{DMTCS_2000_4_1_a2,
     author = {Mcconnell, Ross M. and Spinrad, Jeremy P.},
     title = {Ordered {Vertex} {Partitioning}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000-2001},
     doi = {10.46298/dmtcs.274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.274/}
}
TY  - JOUR
AU  - Mcconnell, Ross M.
AU  - Spinrad, Jeremy P.
TI  - Ordered Vertex Partitioning
JO  - Discrete mathematics & theoretical computer science
PY  - 2000-2001
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.274/
DO  - 10.46298/dmtcs.274
LA  - en
ID  - DMTCS_2000_4_1_a2
ER  - 
%0 Journal Article
%A Mcconnell, Ross M.
%A Spinrad, Jeremy P.
%T Ordered Vertex Partitioning
%J Discrete mathematics & theoretical computer science
%D 2000-2001
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.274/
%R 10.46298/dmtcs.274
%G en
%F DMTCS_2000_4_1_a2
Mcconnell, Ross M.; Spinrad, Jeremy P. Ordered Vertex Partitioning. Discrete mathematics & theoretical computer science, Tome 4 (2000-2001) no. 1. doi : 10.46298/dmtcs.274. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.274/

Cité par Sources :