Matroid Polytopes and Their Volumes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of $M$. Our proofs are based on a natural extension of Postnikov's theory of generalized permutohedra.
@article{DMTCS_2009_special_256_a56,
     author = {Ardila, Federico and Benedetti, Carolina and Doker, Jeffrey},
     title = {Matroid {Polytopes} and {Their} {Volumes}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2734},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2734/}
}
TY  - JOUR
AU  - Ardila, Federico
AU  - Benedetti, Carolina
AU  - Doker, Jeffrey
TI  - Matroid Polytopes and Their Volumes
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2734/
DO  - 10.46298/dmtcs.2734
LA  - en
ID  - DMTCS_2009_special_256_a56
ER  - 
%0 Journal Article
%A Ardila, Federico
%A Benedetti, Carolina
%A Doker, Jeffrey
%T Matroid Polytopes and Their Volumes
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2734/
%R 10.46298/dmtcs.2734
%G en
%F DMTCS_2009_special_256_a56
Ardila, Federico; Benedetti, Carolina; Doker, Jeffrey. Matroid Polytopes and Their Volumes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2734. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2734/

Cité par Sources :