Shortest path poset of finite Coxeter groups
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group $W$ from the identity to the longest word in $W, w_0$. We show that this poset is the union of Boolean posets of rank absolute length of $w_0$; that is, any shortest path labeled by reflections $t_1,\ldots,t_m$ is fully commutative. This allows us to give a combinatorial interpretation to the lowest-degree terms in the complete $\textbf{cd}$-index of $W$.
@article{DMTCS_2009_special_256_a43,
     author = {Blanco, Sa\'ul A.},
     title = {Shortest path poset of finite {Coxeter} groups},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2721},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2721/}
}
TY  - JOUR
AU  - Blanco, Saúl A.
TI  - Shortest path poset of finite Coxeter groups
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2721/
DO  - 10.46298/dmtcs.2721
LA  - en
ID  - DMTCS_2009_special_256_a43
ER  - 
%0 Journal Article
%A Blanco, Saúl A.
%T Shortest path poset of finite Coxeter groups
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2721/
%R 10.46298/dmtcs.2721
%G en
%F DMTCS_2009_special_256_a43
Blanco, Saúl A. Shortest path poset of finite Coxeter groups. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2721. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2721/

Cité par Sources :