k-Parabolic Subspace Arrangements
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

In this paper, we study k-parabolic arrangements, a generalization of the k-equal arrangement for any finite real reflection group. When k=2, these arrangements correspond to the well-studied Coxeter arrangements. Brieskorn (1971) showed that the fundamental group of the complement of the type W Coxeter arrangement (over $\mathbb{C}$) is isomorphic to the pure Artin group of type W. Khovanov (1996) gave an algebraic description for the fundamental group of the complement of the 3-equal arrangement (over $\mathbb{R}$). We generalize Khovanov's result to obtain an algebraic description of the fundamental group of the complement of the 3-parabolic arrangement for arbitrary finite reflection group. Our description is a real analogue to Brieskorn's description.
@article{DMTCS_2009_special_256_a33,
     author = {Severs, Christopher and White, Jacob},
     title = {k-Parabolic {Subspace} {Arrangements}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2711/}
}
TY  - JOUR
AU  - Severs, Christopher
AU  - White, Jacob
TI  - k-Parabolic Subspace Arrangements
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2711/
DO  - 10.46298/dmtcs.2711
LA  - en
ID  - DMTCS_2009_special_256_a33
ER  - 
%0 Journal Article
%A Severs, Christopher
%A White, Jacob
%T k-Parabolic Subspace Arrangements
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2711/
%R 10.46298/dmtcs.2711
%G en
%F DMTCS_2009_special_256_a33
Severs, Christopher; White, Jacob. k-Parabolic Subspace Arrangements. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2711. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2711/

Cité par Sources :