Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-Lusztig polynomial$ P_id,w(q)=1+q^h$ for some $h$.
@article{DMTCS_2009_special_256_a27,
     author = {Woo, Alexander},
     title = {Permutations with {Kazhdan-Lusztig} polynomial $ P_id,w(q)=1+q^h$},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/}
}
TY  - JOUR
AU  - Woo, Alexander
TI  - Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/
DO  - 10.46298/dmtcs.2705
LA  - en
ID  - DMTCS_2009_special_256_a27
ER  - 
%0 Journal Article
%A Woo, Alexander
%T Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/
%R 10.46298/dmtcs.2705
%G en
%F DMTCS_2009_special_256_a27
Woo, Alexander. Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2705. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/

Cité par Sources :