Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2009_special_256_a27, author = {Woo, Alexander}, title = {Permutations with {Kazhdan-Lusztig} polynomial $ P_id,w(q)=1+q^h$}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)}, year = {2009}, doi = {10.46298/dmtcs.2705}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/} }
TY - JOUR AU - Woo, Alexander TI - Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$ JO - Discrete mathematics & theoretical computer science PY - 2009 VL - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/ DO - 10.46298/dmtcs.2705 LA - en ID - DMTCS_2009_special_256_a27 ER -
%0 Journal Article %A Woo, Alexander %T Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$ %J Discrete mathematics & theoretical computer science %D 2009 %V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/ %R 10.46298/dmtcs.2705 %G en %F DMTCS_2009_special_256_a27
Woo, Alexander. Permutations with Kazhdan-Lusztig polynomial $ P_id,w(q)=1+q^h$. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2705. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2705/
Cité par Sources :