polymake and Lattice Polytopes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

The $\mathtt{polymake}$ software system deals with convex polytopes and related objects from geometric combinatorics. This note reports on a new implementation of a subclass for lattice polytopes. The features displayed are enabled by recent changes to the $\mathtt{polymake}$ core, which will be discussed briefly.
@article{DMTCS_2009_special_256_a12,
     author = {Joswig, Michael and M\"uller, Benjamin and Paffenholz, Andreas},
     title = {polymake and {Lattice} {Polytopes}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2690},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2690/}
}
TY  - JOUR
AU  - Joswig, Michael
AU  - Müller, Benjamin
AU  - Paffenholz, Andreas
TI  - polymake and Lattice Polytopes
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2690/
DO  - 10.46298/dmtcs.2690
LA  - en
ID  - DMTCS_2009_special_256_a12
ER  - 
%0 Journal Article
%A Joswig, Michael
%A Müller, Benjamin
%A Paffenholz, Andreas
%T polymake and Lattice Polytopes
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2690/
%R 10.46298/dmtcs.2690
%G en
%F DMTCS_2009_special_256_a12
Joswig, Michael; Müller, Benjamin; Paffenholz, Andreas. polymake and Lattice Polytopes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2690. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2690/

Cité par Sources :