Rationality, irrationality, and Wilf equivalence in generalized factor order
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

Let $P$ be a partially ordered set and consider the free monoid $P^{\ast}$ of all words over $P$. If $w,w' \in P^{\ast}$ then $w'$ is a factor of $w$ if there are words $u,v$ with $w=uw'v$. Define generalized factor order on $P^{\ast}$ by letting $u \leq w$ if there is a factor $w'$ of $w$ having the same length as $u$ such that $u \leq w'$, where the comparison of $u$ and $w'$ is done componentwise using the partial order in $P$. One obtains ordinary factor order by insisting that $u=w'$ or, equivalently, by taking $P$ to be an antichain. Given $u \in P^{\ast}$, we prove that the language $\mathcal{F}(u)=\{w : w \geq u\}$ is accepted by a finite state automaton. If $P$ is finite then it follows that the generating function $F(u)=\sum_{w \geq u} w$ is rational. This is an analogue of a theorem of Björner and Sagan for generalized subword order. We also consider $P=\mathbb{P}$, the positive integers with the usual total order, so that $\mathbb{P}^{\ast}$ is the set of compositions. In this case one obtains a weight generating function $F(u;t,x)$ by substituting $tx^n$ each time $n \in \mathbb{P}$ appears in $F(u)$. We show that this generating function is also rational by using the transfer-matrix method. Words $u,v$ are said to be Wilf equivalent if $F(u;t,x)=F(v;t,x)$ and we can prove various Wilf equivalences combinatorially. Björner found a recursive formula for the Möbius function of ordinary factor order on $P^{\ast}$. It follows that one always has $\mu (u,w)=0, \pm 1$. Using the Pumping Lemma we show that the generating function $M(u)= \sum_{w \geq u} | \mu (u,w) | w$ can be irrational.
@article{DMTCS_2009_special_256_a10,
     author = {Kitaev, Sergey and Liese, Jeffrey and Remmel, Jeffrey and Sagan, Bruce},
     title = {Rationality, irrationality, and {Wilf} equivalence in generalized factor order},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2688},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2688/}
}
TY  - JOUR
AU  - Kitaev, Sergey
AU  - Liese, Jeffrey
AU  - Remmel, Jeffrey
AU  - Sagan, Bruce
TI  - Rationality, irrationality, and Wilf equivalence in generalized factor order
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2688/
DO  - 10.46298/dmtcs.2688
LA  - en
ID  - DMTCS_2009_special_256_a10
ER  - 
%0 Journal Article
%A Kitaev, Sergey
%A Liese, Jeffrey
%A Remmel, Jeffrey
%A Sagan, Bruce
%T Rationality, irrationality, and Wilf equivalence in generalized factor order
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2688/
%R 10.46298/dmtcs.2688
%G en
%F DMTCS_2009_special_256_a10
Kitaev, Sergey; Liese, Jeffrey; Remmel, Jeffrey; Sagan, Bruce. Rationality, irrationality, and Wilf equivalence in generalized factor order. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2688. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2688/

Cité par Sources :