Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2009_special_256_a9, author = {Luque, Jean-Gabriel}, title = {Macdonald polynomials at $t=q^k$}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)}, year = {2009}, doi = {10.46298/dmtcs.2687}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2687/} }
TY - JOUR AU - Luque, Jean-Gabriel TI - Macdonald polynomials at $t=q^k$ JO - Discrete mathematics & theoretical computer science PY - 2009 VL - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2687/ DO - 10.46298/dmtcs.2687 LA - en ID - DMTCS_2009_special_256_a9 ER -
%0 Journal Article %A Luque, Jean-Gabriel %T Macdonald polynomials at $t=q^k$ %J Discrete mathematics & theoretical computer science %D 2009 %V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2687/ %R 10.46298/dmtcs.2687 %G en %F DMTCS_2009_special_256_a9
Luque, Jean-Gabriel. Macdonald polynomials at $t=q^k$. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2687. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2687/
Cité par Sources :