Infinite log-concavity: developments and conjectures
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009).

Voir la notice de l'article provenant de la source Episciences

Given a sequence $(a_k)=a_0,a_1,a_2,\ldots$ of real numbers, define a new sequence $\mathcal{L}(a_k)=(b_k)$ where $b_k=a_k^2-a_{k-1}a_{k+1}$. So $(a_k)$ is log-concave if and only if $(b_k)$ is a nonnegative sequence. Call $(a_k)$ $\textit{infinitely log-concave}$ if $\mathcal{L}^i(a_k)$ is nonnegative for all $i \geq 1$. Boros and Moll conjectured that the rows of Pascal's triangle are infinitely log-concave. Using a computer and a stronger version of log-concavity, we prove their conjecture for the $n$th row for all $n \leq 1450$. We can also use our methods to give a simple proof of a recent result of Uminsky and Yeats about regions of infinite log-concavity. We investigate related questions about the columns of Pascal's triangle, $q$-analogues, symmetric functions, real-rooted polynomials, and Toeplitz matrices. In addition, we offer several conjectures.
@article{DMTCS_2009_special_256_a0,
     author = {McNamara, Peter R. W. and Sagan, Bruce E.},
     title = {Infinite log-concavity: developments and conjectures},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)},
     year = {2009},
     doi = {10.46298/dmtcs.2678},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2678/}
}
TY  - JOUR
AU  - McNamara, Peter R. W.
AU  - Sagan, Bruce E.
TI  - Infinite log-concavity: developments and conjectures
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2678/
DO  - 10.46298/dmtcs.2678
LA  - en
ID  - DMTCS_2009_special_256_a0
ER  - 
%0 Journal Article
%A McNamara, Peter R. W.
%A Sagan, Bruce E.
%T Infinite log-concavity: developments and conjectures
%J Discrete mathematics & theoretical computer science
%D 2009
%V DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2678/
%R 10.46298/dmtcs.2678
%G en
%F DMTCS_2009_special_256_a0
McNamara, Peter R. W.; Sagan, Bruce E. Infinite log-concavity: developments and conjectures. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (2009). doi : 10.46298/dmtcs.2678. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2678/

Cité par Sources :