A characterization for all interval doubling schemes of the lattice of permutations
Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 4
Cet article a éte moissonné depuis la source Episciences
The lattice \textbfS_n of all permutations on a n-element set has been shown to be \emphbounded [CAS], which is a strong constructive property characterized by the fact that \textbfS_n admits what we call an \emph interval doubling scheme. In this paper we characterize all interval doubling schemes of the lattice \textbfS_n, a result that gives a nice precision on the bounded nature of the lattice of permutations. This theorem is a direct corollary of two strong properties that are also given with their proofs.
@article{DMTCS_1999_3_4_a4,
author = {Caspard, Nathalie},
title = {A characterization for all interval doubling schemes of the lattice of permutations},
journal = {Discrete mathematics & theoretical computer science},
year = {1998-1999},
volume = {3},
number = {4},
doi = {10.46298/dmtcs.264},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.264/}
}
TY - JOUR AU - Caspard, Nathalie TI - A characterization for all interval doubling schemes of the lattice of permutations JO - Discrete mathematics & theoretical computer science PY - 1998-1999 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.264/ DO - 10.46298/dmtcs.264 LA - en ID - DMTCS_1999_3_4_a4 ER -
%0 Journal Article %A Caspard, Nathalie %T A characterization for all interval doubling schemes of the lattice of permutations %J Discrete mathematics & theoretical computer science %D 1998-1999 %V 3 %N 4 %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.264/ %R 10.46298/dmtcs.264 %G en %F DMTCS_1999_3_4_a4
Caspard, Nathalie. A characterization for all interval doubling schemes of the lattice of permutations. Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 4. doi: 10.46298/dmtcs.264
Cité par Sources :