Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 4.

Voir la notice de l'article provenant de la source Episciences

We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.
@article{DMTCS_1999_3_4_a1,
     author = {Robertson, Aaron},
     title = {Permutations {Containing} and {Avoiding} $\textit{123}$ and $\textit{132}$ {Patterns}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1998-1999},
     doi = {10.46298/dmtcs.261},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.261/}
}
TY  - JOUR
AU  - Robertson, Aaron
TI  - Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
JO  - Discrete mathematics & theoretical computer science
PY  - 1998-1999
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.261/
DO  - 10.46298/dmtcs.261
LA  - en
ID  - DMTCS_1999_3_4_a1
ER  - 
%0 Journal Article
%A Robertson, Aaron
%T Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
%J Discrete mathematics & theoretical computer science
%D 1998-1999
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.261/
%R 10.46298/dmtcs.261
%G en
%F DMTCS_1999_3_4_a1
Robertson, Aaron. Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns. Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 4. doi : 10.46298/dmtcs.261. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.261/

Cité par Sources :