The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order
Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 2.

Voir la notice de l'article provenant de la source Episciences

We prove the existence of an invariant ring \textbfC[X_1,...,X_n]^T generated by elements with a total degree of at most 2, which has no finite SAGBI basis with respect to any admissible order. Therefore, 2 is the optimal lower bound for the total degree of generators of invariant rings with such a property.
@article{DMTCS_1999_3_2_a2,
     author = {G\"obel, Manfred},
     title = {The {Optimal} {Lower} {Bound} for {Generators} of {Invariant} {Rings} without {Finite} {SAGBI} {Bases} with {Respect} to {Any} {Admissible} {Order}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1998-1999},
     doi = {10.46298/dmtcs.259},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.259/}
}
TY  - JOUR
AU  - Göbel, Manfred
TI  - The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order
JO  - Discrete mathematics & theoretical computer science
PY  - 1998-1999
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.259/
DO  - 10.46298/dmtcs.259
LA  - en
ID  - DMTCS_1999_3_2_a2
ER  - 
%0 Journal Article
%A Göbel, Manfred
%T The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order
%J Discrete mathematics & theoretical computer science
%D 1998-1999
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.259/
%R 10.46298/dmtcs.259
%G en
%F DMTCS_1999_3_2_a2
Göbel, Manfred. The Optimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order. Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 2. doi : 10.46298/dmtcs.259. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.259/

Cité par Sources :