A note on domino treewidth
Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 4.

Voir la notice de l'article provenant de la source Episciences

In [DO95], Ding and Oporowski proved that for every k, and d, there exists a constant c_k,d, such that every graph with treewidth at most k and maximum degree at most d has domino treewidth at most c_k,d. This note gives a new simple proof of this fact, with a better bound for c_k,d, namely (9k+7)d(d+1) -1. It is also shown that a lower bound of Ω (kd) holds: there are graphs with domino treewidth at least 1/12 × kd-1, treewidth at most k, and maximum degree at most d, for many values k and d. The domino treewidth of a tree is at most its maximum degree.
@article{DMTCS_1999_3_4_a0,
     author = {Bodlaender, Hans L.},
     title = {A note on domino treewidth},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1998-1999},
     doi = {10.46298/dmtcs.256},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.256/}
}
TY  - JOUR
AU  - Bodlaender, Hans L.
TI  - A note on domino treewidth
JO  - Discrete mathematics & theoretical computer science
PY  - 1998-1999
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.256/
DO  - 10.46298/dmtcs.256
LA  - en
ID  - DMTCS_1999_3_4_a0
ER  - 
%0 Journal Article
%A Bodlaender, Hans L.
%T A note on domino treewidth
%J Discrete mathematics & theoretical computer science
%D 1998-1999
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.256/
%R 10.46298/dmtcs.256
%G en
%F DMTCS_1999_3_4_a0
Bodlaender, Hans L. A note on domino treewidth. Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 4. doi : 10.46298/dmtcs.256. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.256/

Cité par Sources :