$Y$ -meshes and generalized pentagram maps
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015).

Voir la notice de l'article provenant de la source Episciences

We introduce a rich family of generalizations of the pentagram map sharing the property that each generates an infinite configuration of points and lines with four points on each line. These systems all have a description as $Y$ -mutations in a cluster algebra and hence establish new connections between cluster theory and projective geometry.
@article{DMTCS_2015_special_285_a64,
     author = {Glick, Max and Pylyavskyy, Pavlo},
     title = {$Y$ -meshes and generalized pentagram maps},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)},
     year = {2015},
     doi = {10.46298/dmtcs.2520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2520/}
}
TY  - JOUR
AU  - Glick, Max
AU  - Pylyavskyy, Pavlo
TI  - $Y$ -meshes and generalized pentagram maps
JO  - Discrete mathematics & theoretical computer science
PY  - 2015
VL  - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2520/
DO  - 10.46298/dmtcs.2520
LA  - en
ID  - DMTCS_2015_special_285_a64
ER  - 
%0 Journal Article
%A Glick, Max
%A Pylyavskyy, Pavlo
%T $Y$ -meshes and generalized pentagram maps
%J Discrete mathematics & theoretical computer science
%D 2015
%V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2520/
%R 10.46298/dmtcs.2520
%G en
%F DMTCS_2015_special_285_a64
Glick, Max; Pylyavskyy, Pavlo. $Y$ -meshes and generalized pentagram maps. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2520. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2520/

Cité par Sources :