Quicksort algorithm again revisited
Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 2.

Voir la notice de l'article provenant de la source Episciences

We consider the standard Quicksort algorithm that sorts n distinct keys with all possible n! orderings of keys being equally likely. Equivalently, we analyze the total path length L(n) in a randomly built \emphbinary search tree. Obtaining the limiting distribution of L(n) is still an outstanding open problem. In this paper, we establish an integral equation for the probability density of the number of comparisons L(n). Then, we investigate the large deviations of L(n). We shall show that the left tail of the limiting distribution is much ''thinner'' (i.e., double exponential) than the right tail (which is only exponential). Our results contain some constants that must be determined numerically. We use formal asymptotic methods of applied mathematics such as the WKB method and matched asymptotics.
@article{DMTCS_1999_3_2_a1,
     author = {Knessl, Charles and Szpankowski, Wojciech},
     title = {Quicksort algorithm again revisited},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1998-1999},
     doi = {10.46298/dmtcs.252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.252/}
}
TY  - JOUR
AU  - Knessl, Charles
AU  - Szpankowski, Wojciech
TI  - Quicksort algorithm again revisited
JO  - Discrete mathematics & theoretical computer science
PY  - 1998-1999
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.252/
DO  - 10.46298/dmtcs.252
LA  - en
ID  - DMTCS_1999_3_2_a1
ER  - 
%0 Journal Article
%A Knessl, Charles
%A Szpankowski, Wojciech
%T Quicksort algorithm again revisited
%J Discrete mathematics & theoretical computer science
%D 1998-1999
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.252/
%R 10.46298/dmtcs.252
%G en
%F DMTCS_1999_3_2_a1
Knessl, Charles; Szpankowski, Wojciech. Quicksort algorithm again revisited. Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 2. doi : 10.46298/dmtcs.252. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.252/

Cité par Sources :