Dual filtered graphs
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015).

Voir la notice de l'article provenant de la source Episciences

We define a $K$ -theoretic analogue of Fomin’s dual graded graphs, which we call dual filtered graphs. The key formula in the definition is $DU - UD = D + I$. Our major examples are $K$ -theoretic analogues of Young’s lattice, the binary tree, and the graph determined by the Poirier-Reutenauer Hopf algebra. Most of our examples arise via two constructions, which we call the Pieri construction and the Möbius construction. The Pieri construction is closely related to the construction of dual graded graphs from a graded Hopf algebra, as described in Bergeron-Lam-Li, Nzeutchap, and Lam-Shimozono. The Möbius construction is more mysterious but also potentially more important, as it corresponds to natural insertion algorithms.
@article{DMTCS_2015_special_285_a59,
     author = {Patrias, Rebecca and Pylyavskyy, Pavlo},
     title = {Dual filtered graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)},
     year = {2015},
     doi = {10.46298/dmtcs.2515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2515/}
}
TY  - JOUR
AU  - Patrias, Rebecca
AU  - Pylyavskyy, Pavlo
TI  - Dual filtered graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2015
VL  - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2515/
DO  - 10.46298/dmtcs.2515
LA  - en
ID  - DMTCS_2015_special_285_a59
ER  - 
%0 Journal Article
%A Patrias, Rebecca
%A Pylyavskyy, Pavlo
%T Dual filtered graphs
%J Discrete mathematics & theoretical computer science
%D 2015
%V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2515/
%R 10.46298/dmtcs.2515
%G en
%F DMTCS_2015_special_285_a59
Patrias, Rebecca; Pylyavskyy, Pavlo. Dual filtered graphs. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2515. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2515/

Cité par Sources :