Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2015_special_285_a54, author = {Yang, Arthur L.B. and Zhang, Philip B.}, title = {The {Real-rootedness} of {Eulerian} {Polynomials} via the {Hermite{\textendash}Biehler} {Theorem}}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)}, year = {2015}, doi = {10.46298/dmtcs.2510}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2510/} }
TY - JOUR AU - Yang, Arthur L.B. AU - Zhang, Philip B. TI - The Real-rootedness of Eulerian Polynomials via the Hermite–Biehler Theorem JO - Discrete mathematics & theoretical computer science PY - 2015 VL - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2510/ DO - 10.46298/dmtcs.2510 LA - en ID - DMTCS_2015_special_285_a54 ER -
%0 Journal Article %A Yang, Arthur L.B. %A Zhang, Philip B. %T The Real-rootedness of Eulerian Polynomials via the Hermite–Biehler Theorem %J Discrete mathematics & theoretical computer science %D 2015 %V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2510/ %R 10.46298/dmtcs.2510 %G en %F DMTCS_2015_special_285_a54
Yang, Arthur L.B.; Zhang, Philip B. The Real-rootedness of Eulerian Polynomials via the Hermite–Biehler Theorem. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2510. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2510/
Cité par Sources :