The Number of Sides of a Parallelogram
Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 2.

Voir la notice de l'article provenant de la source Episciences

We define parallelograms of base a and b in a group. They appear as minimal relators in a presentation of a subgroup with generators a and b. In a Lie group they are realized as closed polygonal lines, with sides being orbits of left-invariant vector fields. We estimate the number of sides of parallelograms in a free nilpotent group and point out a relation to the rank of rational series.
@article{DMTCS_1999_3_2_a0,
     author = {Falbel, Elisha and Koseleff, Pierre-Vincent},
     title = {The {Number} of {Sides} of a {Parallelogram}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1998-1999},
     doi = {10.46298/dmtcs.251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.251/}
}
TY  - JOUR
AU  - Falbel, Elisha
AU  - Koseleff, Pierre-Vincent
TI  - The Number of Sides of a Parallelogram
JO  - Discrete mathematics & theoretical computer science
PY  - 1998-1999
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.251/
DO  - 10.46298/dmtcs.251
LA  - en
ID  - DMTCS_1999_3_2_a0
ER  - 
%0 Journal Article
%A Falbel, Elisha
%A Koseleff, Pierre-Vincent
%T The Number of Sides of a Parallelogram
%J Discrete mathematics & theoretical computer science
%D 1998-1999
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.251/
%R 10.46298/dmtcs.251
%G en
%F DMTCS_1999_3_2_a0
Falbel, Elisha; Koseleff, Pierre-Vincent. The Number of Sides of a Parallelogram. Discrete mathematics & theoretical computer science, Tome 3 (1998-1999) no. 2. doi : 10.46298/dmtcs.251. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.251/

Cité par Sources :