Cyclic Sieving and Plethysm Coefficients
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015).

Voir la notice de l'article provenant de la source Episciences

A combinatorial expression for the coefficient of the Schur function $s_{\lambda}$ in the expansion of the plethysm $p_{n/d}^d \circ s_{\mu}$ is given for all $d$ dividing $n$ for the cases in which $n=2$ or $\lambda$ is rectangular. In these cases, the coefficient $\langle p_{n/d}^d \circ s_{\mu}, s_{\lambda} \rangle$ is shown to count, up to sign, the number of fixed points of an $\langle s_{\mu}^n, s_{\lambda} \rangle$-element set under the $d^e$ power of an order $n$ cyclic action. If $n=2$, the action is the Schützenberger involution on semistandard Young tableaux (also known as evacuation), and, if $\lambda$ is rectangular, the action is a certain power of Schützenberger and Shimozono's <i>jeu-de-taquin</i> promotion.This work extends results of Stembridge and Rhoades linking fixed points of the Schützenberger actions to ribbon tableaux enumeration. The conclusion for the case $n=2$ is equivalent to the domino tableaux rule of Carré and Leclerc for discriminating between the symmetric and antisymmetric parts of the square of a Schur function.
@article{DMTCS_2015_special_285_a53,
     author = {Rush, David B},
     title = {Cyclic {Sieving} and {Plethysm} {Coefficients}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)},
     year = {2015},
     doi = {10.46298/dmtcs.2509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2509/}
}
TY  - JOUR
AU  - Rush, David B
TI  - Cyclic Sieving and Plethysm Coefficients
JO  - Discrete mathematics & theoretical computer science
PY  - 2015
VL  - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2509/
DO  - 10.46298/dmtcs.2509
LA  - en
ID  - DMTCS_2015_special_285_a53
ER  - 
%0 Journal Article
%A Rush, David B
%T Cyclic Sieving and Plethysm Coefficients
%J Discrete mathematics & theoretical computer science
%D 2015
%V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2509/
%R 10.46298/dmtcs.2509
%G en
%F DMTCS_2015_special_285_a53
Rush, David B. Cyclic Sieving and Plethysm Coefficients. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2509. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2509/

Cité par Sources :