The $(m, n)$-rational $q, t$-Catalan polynomials for $m=3$ and their $q, t$-symmetry
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015).

Voir la notice de l'article provenant de la source Episciences

We introduce a new statistic, skip, on rational $(3,n)$-Dyck paths and define a marked rank word for each path when $n$ is not a multiple of 3. If a triple of valid statistics (area; skip; dinv) are given, we have an algorithm to construct the marked rank word corresponding to the triple. By considering all valid triples we give an explicit formula for the $(m,n)$-rational $q; t$-Catalan polynomials when $m=3$. Then there is a natural bijection on the triples of statistics (area; skip; dinv) which exchanges the statistics area and dinv while fixing the skip. Thus we prove the $q; t$-symmetry of $(m,n)$-rational $q; t$-Catalan polynomials for $m=3$..
@article{DMTCS_2015_special_285_a44,
     author = {Kaliszewski, Ryan and Li, Huilan},
     title = {The $(m, n)$-rational $q, t${-Catalan} polynomials for $m=3$ and their $q, t$-symmetry},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)},
     year = {2015},
     doi = {10.46298/dmtcs.2500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2500/}
}
TY  - JOUR
AU  - Kaliszewski, Ryan
AU  - Li, Huilan
TI  - The $(m, n)$-rational $q, t$-Catalan polynomials for $m=3$ and their $q, t$-symmetry
JO  - Discrete mathematics & theoretical computer science
PY  - 2015
VL  - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2500/
DO  - 10.46298/dmtcs.2500
LA  - en
ID  - DMTCS_2015_special_285_a44
ER  - 
%0 Journal Article
%A Kaliszewski, Ryan
%A Li, Huilan
%T The $(m, n)$-rational $q, t$-Catalan polynomials for $m=3$ and their $q, t$-symmetry
%J Discrete mathematics & theoretical computer science
%D 2015
%V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2500/
%R 10.46298/dmtcs.2500
%G en
%F DMTCS_2015_special_285_a44
Kaliszewski, Ryan; Li, Huilan. The $(m, n)$-rational $q, t$-Catalan polynomials for $m=3$ and their $q, t$-symmetry. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2500. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2500/

Cité par Sources :