Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015).

Voir la notice de l'article provenant de la source Episciences

We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere.
@article{DMTCS_2015_special_285_a27,
     author = {Watanabe, Masaki},
     title = {Kra\'skiewicz-Pragacz modules and some positivity properties of {Schubert} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)},
     year = {2015},
     doi = {10.46298/dmtcs.2483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2483/}
}
TY  - JOUR
AU  - Watanabe, Masaki
TI  - Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2015
VL  - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2483/
DO  - 10.46298/dmtcs.2483
LA  - en
ID  - DMTCS_2015_special_285_a27
ER  - 
%0 Journal Article
%A Watanabe, Masaki
%T Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials
%J Discrete mathematics & theoretical computer science
%D 2015
%V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2483/
%R 10.46298/dmtcs.2483
%G en
%F DMTCS_2015_special_285_a27
Watanabe, Masaki. Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2483. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2483/

Cité par Sources :