Factoring peak polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015).

Voir la notice de l'article provenant de la source Episciences

Given a permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$, we say an index $i$ is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of $\pi$. Given any set $S$ of positive integers, define ${P_S(n)=\{\pi\in S_n:P(\pi)=S\}}$. Billey-Burdzy-Sagan showed that for all fixed subsets of positive integers $S$ and sufficiently large $n$, $|P_S(n)|=p_S(n)2^{n-|S|-1}$ for some polynomial $p_S(x)$ depending on $S$. They conjectured that the coefficients of $p_S(x)$ expanded in a binomial coefficient basis centered at $max(S)$ are all positive. We show that this is a consequence of a stronger conjecture that bounds the modulus of the roots of $p_S(x)$. Furthermore, we give an efficient explicit formula for peak polynomials in the binomial basis centered at $0$, which we use to identify many integer roots of peak polynomials along with certain inequalities and identities.
@article{DMTCS_2015_special_285_a22,
     author = {Billey, Sara and Fahrbach, Matthew and Talmage, Alan},
     title = {Factoring peak polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)},
     year = {2015},
     doi = {10.46298/dmtcs.2478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2478/}
}
TY  - JOUR
AU  - Billey, Sara
AU  - Fahrbach, Matthew
AU  - Talmage, Alan
TI  - Factoring peak polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2015
VL  - DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2478/
DO  - 10.46298/dmtcs.2478
LA  - en
ID  - DMTCS_2015_special_285_a22
ER  - 
%0 Journal Article
%A Billey, Sara
%A Fahrbach, Matthew
%A Talmage, Alan
%T Factoring peak polynomials
%J Discrete mathematics & theoretical computer science
%D 2015
%V DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2478/
%R 10.46298/dmtcs.2478
%G en
%F DMTCS_2015_special_285_a22
Billey, Sara; Fahrbach, Matthew; Talmage, Alan. Factoring peak polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015). doi : 10.46298/dmtcs.2478. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2478/

Cité par Sources :