The order of birational rowmotion
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

Various authors have studied a natural operation (under various names) on the order ideals (equivalently antichains) of a finite poset, here called \emphrowmotion. For certain posets of interest, the order of this map is much smaller than one would naively expect, and the orbits exhibit unexpected properties. In very recent work (inspired by discussions with Berenstein) Einstein and Propp describe how rowmotion can be generalized: first to the piecewise-linear setting of order polytopes, then via detropicalization to the birational setting. In the latter setting, it is no longer \empha priori clear even that birational rowmotion has finite order, and for many posets the order is infinite. However, we are able to show that birational rowmotion has the same order, p+q, for the poset P=[p]×[q] (product of two chains), as ordinary rowmotion. We also show that birational (hence ordinary) rowmotion has finite order for some other classes of posets, e.g., the upper, lower, right and left halves of the poset above, and trees having all leaves on the same level. Our methods are based on those used by Volkov to resolve the type AA (rectangular) Zamolodchikov Periodicity Conjecture.
@article{DMTCS_2014_special_265_a64,
     author = {Grinberg, Darij and Roby, Tom},
     title = {The order of birational rowmotion},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2439},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2439/}
}
TY  - JOUR
AU  - Grinberg, Darij
AU  - Roby, Tom
TI  - The order of birational rowmotion
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2439/
DO  - 10.46298/dmtcs.2439
LA  - en
ID  - DMTCS_2014_special_265_a64
ER  - 
%0 Journal Article
%A Grinberg, Darij
%A Roby, Tom
%T The order of birational rowmotion
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2439/
%R 10.46298/dmtcs.2439
%G en
%F DMTCS_2014_special_265_a64
Grinberg, Darij; Roby, Tom. The order of birational rowmotion. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2439. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2439/

Cité par Sources :