Schubert varieties, inversion arrangements, and Peterson translation
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

We show that an element $\mathcal{w}$ of a finite Weyl group W is rationally smooth if and only if the hyperplane arrangement $\mathcal{I} (\mathcal{w})$ associated to the inversion set of \mathcal{w} is inductively free, and the product $(d_1+1) ...(d_l+1)$ of the coexponents $d_1,\ldots,d_l$ is equal to the size of the Bruhat interval [e,w]. We also use Peterson translation of coconvex sets to give a Shapiro-Steinberg-Kostant rule for the exponents of $\mathcal{w}$.
@article{DMTCS_2014_special_265_a61,
     author = {Slofstra, William},
     title = {Schubert varieties, inversion arrangements, and {Peterson} translation},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2436},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2436/}
}
TY  - JOUR
AU  - Slofstra, William
TI  - Schubert varieties, inversion arrangements, and Peterson translation
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2436/
DO  - 10.46298/dmtcs.2436
LA  - en
ID  - DMTCS_2014_special_265_a61
ER  - 
%0 Journal Article
%A Slofstra, William
%T Schubert varieties, inversion arrangements, and Peterson translation
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2436/
%R 10.46298/dmtcs.2436
%G en
%F DMTCS_2014_special_265_a61
Slofstra, William. Schubert varieties, inversion arrangements, and Peterson translation. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2436. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2436/

Cité par Sources :