Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2014_special_265_a58, author = {Duchon, Philippe and Duvignau, Romaric}, title = {A new generation tree for permutations, preserving the number of fixed points}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)}, year = {2014}, doi = {10.46298/dmtcs.2433}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2433/} }
TY - JOUR AU - Duchon, Philippe AU - Duvignau, Romaric TI - A new generation tree for permutations, preserving the number of fixed points JO - Discrete mathematics & theoretical computer science PY - 2014 VL - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2433/ DO - 10.46298/dmtcs.2433 LA - en ID - DMTCS_2014_special_265_a58 ER -
%0 Journal Article %A Duchon, Philippe %A Duvignau, Romaric %T A new generation tree for permutations, preserving the number of fixed points %J Discrete mathematics & theoretical computer science %D 2014 %V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2433/ %R 10.46298/dmtcs.2433 %G en %F DMTCS_2014_special_265_a58
Duchon, Philippe; Duvignau, Romaric. A new generation tree for permutations, preserving the number of fixed points. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2433. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2433/
Cité par Sources :