Hopf Algebra of Sashes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell permutations. The Pell permutations are in bijection with combinatorial objects that we call sashes, that is, tilings of a 1 by n rectangle with three types of tiles: black 1 by 1 squares, white 1 by 1 squares, and white 1 by 2 rectangles. The bijection induces a Hopf algebra structure on sashes. We describe the product and coproduct in terms of sashes, and the natural partial order on sashes. We also describe the dual coproduct and dual product of the dual Hopf algebra of sashes.
@article{DMTCS_2014_special_265_a53,
     author = {Law, Shirley},
     title = {Hopf {Algebra} of {Sashes}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2428},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2428/}
}
TY  - JOUR
AU  - Law, Shirley
TI  - Hopf Algebra of Sashes
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2428/
DO  - 10.46298/dmtcs.2428
LA  - en
ID  - DMTCS_2014_special_265_a53
ER  - 
%0 Journal Article
%A Law, Shirley
%T Hopf Algebra of Sashes
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2428/
%R 10.46298/dmtcs.2428
%G en
%F DMTCS_2014_special_265_a53
Law, Shirley. Hopf Algebra of Sashes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2428. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2428/

Cité par Sources :