Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2014_special_265_a45, author = {Morrison, Andrew}, title = {A {Murgnahan-Nakayama} rule for {Schubert} polynomials}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)}, year = {2014}, doi = {10.46298/dmtcs.2420}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/} }
TY - JOUR AU - Morrison, Andrew TI - A Murgnahan-Nakayama rule for Schubert polynomials JO - Discrete mathematics & theoretical computer science PY - 2014 VL - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/ DO - 10.46298/dmtcs.2420 LA - en ID - DMTCS_2014_special_265_a45 ER -
%0 Journal Article %A Morrison, Andrew %T A Murgnahan-Nakayama rule for Schubert polynomials %J Discrete mathematics & theoretical computer science %D 2014 %V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/ %R 10.46298/dmtcs.2420 %G en %F DMTCS_2014_special_265_a45
Morrison, Andrew. A Murgnahan-Nakayama rule for Schubert polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2420. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/
Cité par Sources :