A Murgnahan-Nakayama rule for Schubert polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

We expose a rule for multiplying a general Schubert polynomial with a power sum polynomial in $k$ variables. A signed sum over cyclic permutations replaces the signed sum over rim hooks in the classical Murgnahan-Nakayama rule. In the intersection theory of flag manifolds this computes all intersections of Schubert cycles with tautological classes coming from the Chern character. We also discuss extensions of this rule to small quantum cohomology.
@article{DMTCS_2014_special_265_a45,
     author = {Morrison, Andrew},
     title = {A {Murgnahan-Nakayama} rule for {Schubert} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/}
}
TY  - JOUR
AU  - Morrison, Andrew
TI  - A Murgnahan-Nakayama rule for Schubert polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/
DO  - 10.46298/dmtcs.2420
LA  - en
ID  - DMTCS_2014_special_265_a45
ER  - 
%0 Journal Article
%A Morrison, Andrew
%T A Murgnahan-Nakayama rule for Schubert polynomials
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/
%R 10.46298/dmtcs.2420
%G en
%F DMTCS_2014_special_265_a45
Morrison, Andrew. A Murgnahan-Nakayama rule for Schubert polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2420. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2420/

Cité par Sources :