The $m$-Cover Posets and the Strip-Decomposition of $m$-Dyck Paths
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

In the first part of this article we present a realization of the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$ in terms of $m$-tuples of Dyck paths of height $n$, equipped with componentwise rotation order. For that, we define the $m$-cover poset $\mathcal{P}^{\langle m \rangle}$ of an arbitrary bounded poset $\mathcal{P}$, and show that the smallest lattice completion of the $m$-cover poset of the Tamari lattice $\mathcal{T}_n$ is isomorphic to the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$. A crucial tool for the proof of this isomorphism is a decomposition of $m$-Dyck paths into $m$-tuples of classical Dyck paths, which we call the strip-decomposition. Subsequently, we characterize the cases where the $m$-cover poset of an arbitrary poset is a lattice. Finally, we show that the $m$-cover poset of the Cambrian lattice of the dihedral group is a trim lattice with cardinality equal to the generalized Fuss-Catalan number of the dihedral group.
@article{DMTCS_2014_special_265_a34,
     author = {Kallipoliti, Myrto and M\"uhle, Henri},
     title = {The $m${-Cover} {Posets} and the {Strip-Decomposition} of $m${-Dyck} {Paths}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2409},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2409/}
}
TY  - JOUR
AU  - Kallipoliti, Myrto
AU  - Mühle, Henri
TI  - The $m$-Cover Posets and the Strip-Decomposition of $m$-Dyck Paths
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2409/
DO  - 10.46298/dmtcs.2409
LA  - en
ID  - DMTCS_2014_special_265_a34
ER  - 
%0 Journal Article
%A Kallipoliti, Myrto
%A Mühle, Henri
%T The $m$-Cover Posets and the Strip-Decomposition of $m$-Dyck Paths
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2409/
%R 10.46298/dmtcs.2409
%G en
%F DMTCS_2014_special_265_a34
Kallipoliti, Myrto; Mühle, Henri. The $m$-Cover Posets and the Strip-Decomposition of $m$-Dyck Paths. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2409. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2409/

Cité par Sources :