The Rearrangement Conjecture
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence.
@article{DMTCS_2014_special_265_a19,
     author = {Pantone, Jay and Vatter, Vincent},
     title = {The {Rearrangement} {Conjecture}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2394},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2394/}
}
TY  - JOUR
AU  - Pantone, Jay
AU  - Vatter, Vincent
TI  - The Rearrangement Conjecture
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2394/
DO  - 10.46298/dmtcs.2394
LA  - en
ID  - DMTCS_2014_special_265_a19
ER  - 
%0 Journal Article
%A Pantone, Jay
%A Vatter, Vincent
%T The Rearrangement Conjecture
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2394/
%R 10.46298/dmtcs.2394
%G en
%F DMTCS_2014_special_265_a19
Pantone, Jay; Vatter, Vincent. The Rearrangement Conjecture. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2394. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2394/

Cité par Sources :