A direct bijective proof of the hook-length formula
Discrete mathematics & theoretical computer science, Tome 1 (1997).

Voir la notice de l'article provenant de la source Episciences

This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.
@article{DMTCS_1997_1_a8,
     author = {Novelli, Jean-Christophe and Pak, Igor and Stoyanovskii, Alexander V.},
     title = {A direct bijective proof of the hook-length formula},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {1},
     year = {1997},
     doi = {10.46298/dmtcs.239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.239/}
}
TY  - JOUR
AU  - Novelli, Jean-Christophe
AU  - Pak, Igor
AU  - Stoyanovskii, Alexander V.
TI  - A direct bijective proof of the hook-length formula
JO  - Discrete mathematics & theoretical computer science
PY  - 1997
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.239/
DO  - 10.46298/dmtcs.239
LA  - en
ID  - DMTCS_1997_1_a8
ER  - 
%0 Journal Article
%A Novelli, Jean-Christophe
%A Pak, Igor
%A Stoyanovskii, Alexander V.
%T A direct bijective proof of the hook-length formula
%J Discrete mathematics & theoretical computer science
%D 1997
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.239/
%R 10.46298/dmtcs.239
%G en
%F DMTCS_1997_1_a8
Novelli, Jean-Christophe; Pak, Igor; Stoyanovskii, Alexander V. A direct bijective proof of the hook-length formula. Discrete mathematics & theoretical computer science, Tome 1 (1997). doi : 10.46298/dmtcs.239. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.239/

Cité par Sources :