Newton Polytopes of Cluster Variables of Type $A_n$
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

We study Newton polytopes of cluster variables in type $A_n$ cluster algebras, whose cluster and coefficient variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit description of the affine hull and facets of the Newton polytope of the Laurent expansion of any cluster variable, with respect to any cluster. In particular, we show that every Laurent monomial in a Laurent expansion of a type $A$ cluster variable corresponds to a vertex of the Newton polytope. We also describe the face lattice of each Newton polytope via an isomorphism with the lattice of elementary subgraphs of the associated snake graph.
@article{DMTCS_2014_special_265_a12,
     author = {Kalman, Adam},
     title = {Newton {Polytopes} of {Cluster} {Variables} of {Type} $A_n$},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2387/}
}
TY  - JOUR
AU  - Kalman, Adam
TI  - Newton Polytopes of Cluster Variables of Type $A_n$
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2387/
DO  - 10.46298/dmtcs.2387
LA  - en
ID  - DMTCS_2014_special_265_a12
ER  - 
%0 Journal Article
%A Kalman, Adam
%T Newton Polytopes of Cluster Variables of Type $A_n$
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2387/
%R 10.46298/dmtcs.2387
%G en
%F DMTCS_2014_special_265_a12
Kalman, Adam. Newton Polytopes of Cluster Variables of Type $A_n$. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2387. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2387/

Cité par Sources :