On the $H$-triangle of generalised nonnesting partitions
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

With a crystallographic root system $\Phi$ , there are associated two Catalan objects, the set of nonnesting partitions $NN(\Phi)$, and the cluster complex $\Delta (\Phi)$. These possess a number of enumerative coincidences, many of which are captured in a surprising identity, first conjectured by Chapoton. We prove this conjecture, and indicate its generalisation for the Fuß-Catalan objects $NN^{(k)}(\Phi)$ and $\Delta^{(k)}(\Phi)$, conjectured by Armstrong.
@article{DMTCS_2014_special_265_a7,
     author = {Thiel, Marko},
     title = {On the $H$-triangle of generalised nonnesting partitions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2382},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2382/}
}
TY  - JOUR
AU  - Thiel, Marko
TI  - On the $H$-triangle of generalised nonnesting partitions
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2382/
DO  - 10.46298/dmtcs.2382
LA  - en
ID  - DMTCS_2014_special_265_a7
ER  - 
%0 Journal Article
%A Thiel, Marko
%T On the $H$-triangle of generalised nonnesting partitions
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2382/
%R 10.46298/dmtcs.2382
%G en
%F DMTCS_2014_special_265_a7
Thiel, Marko. On the $H$-triangle of generalised nonnesting partitions. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2382. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2382/

Cité par Sources :