$0$-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014).

Voir la notice de l'article provenant de la source Episciences

We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their $(q,t)$-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics.
@article{DMTCS_2014_special_265_a1,
     author = {Huang, Jia},
     title = {$0${-Hecke} algebra action on the {Stanley-Reisner} ring of the {Boolean} algebra},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)},
     year = {2014},
     doi = {10.46298/dmtcs.2376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2376/}
}
TY  - JOUR
AU  - Huang, Jia
TI  - $0$-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2376/
DO  - 10.46298/dmtcs.2376
LA  - en
ID  - DMTCS_2014_special_265_a1
ER  - 
%0 Journal Article
%A Huang, Jia
%T $0$-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra
%J Discrete mathematics & theoretical computer science
%D 2014
%V DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2376/
%R 10.46298/dmtcs.2376
%G en
%F DMTCS_2014_special_265_a1
Huang, Jia. $0$-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (2014). doi : 10.46298/dmtcs.2376. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2376/

Cité par Sources :