Top Coefficients of the Denumerant
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

For a given sequence $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(\alpha)(t)$ that counts the nonnegative integer solutions of the equation $\alpha_1x_1+\alpha_2 x_2+ \ldots+ \alpha_Nx_N+ \alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(\alpha)(t)$ is a quasipolynomial function of $t$ of degree $N$. In combinatorial number theory this function is known as the $\textit{denumerant}$. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(\alpha)(t)$ as step polynomials of $t$. Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(\alpha)(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Experiments using a $\texttt{MAPLE}$ implementation will be posted separately.
@article{DMTCS_2013_special_264_a57,
     author = {Baldoni, Velleda and Berline, Nicole and Dutra, Brandon and K\"oppe, Matthias and Vergne, Michele and De Loera, Jesus},
     title = {Top {Coefficients} of the {Denumerant}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2373/}
}
TY  - JOUR
AU  - Baldoni, Velleda
AU  - Berline, Nicole
AU  - Dutra, Brandon
AU  - Köppe, Matthias
AU  - Vergne, Michele
AU  - De Loera, Jesus
TI  - Top Coefficients of the Denumerant
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2373/
DO  - 10.46298/dmtcs.2373
LA  - en
ID  - DMTCS_2013_special_264_a57
ER  - 
%0 Journal Article
%A Baldoni, Velleda
%A Berline, Nicole
%A Dutra, Brandon
%A Köppe, Matthias
%A Vergne, Michele
%A De Loera, Jesus
%T Top Coefficients of the Denumerant
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2373/
%R 10.46298/dmtcs.2373
%G en
%F DMTCS_2013_special_264_a57
Baldoni, Velleda; Berline, Nicole; Dutra, Brandon; Köppe, Matthias; Vergne, Michele; De Loera, Jesus. Top Coefficients of the Denumerant. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2373. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2373/

Cité par Sources :