A $t$-generalization for Schubert Representatives of the Affine Grassmannian
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

We introduce two families of symmetric functions with an extra parameter $t$ that specialize to Schubert representatives for cohomology and homology of the affine Grassmannian when $t=1$. The families are defined by a statistic on combinatorial objects associated to the type-$A$ affine Weyl group and their transition matrix with Hall-Littlewood polynomials is $t$-positive. We conjecture that one family is the set of $k$-atoms.
@article{DMTCS_2013_special_264_a55,
     author = {Dalal, Avinash J. and Morse, Jennifer},
     title = {A $t$-generalization for {Schubert} {Representatives} of the {Affine} {Grassmannian}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2371},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2371/}
}
TY  - JOUR
AU  - Dalal, Avinash J.
AU  - Morse, Jennifer
TI  - A $t$-generalization for Schubert Representatives of the Affine Grassmannian
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2371/
DO  - 10.46298/dmtcs.2371
LA  - en
ID  - DMTCS_2013_special_264_a55
ER  - 
%0 Journal Article
%A Dalal, Avinash J.
%A Morse, Jennifer
%T A $t$-generalization for Schubert Representatives of the Affine Grassmannian
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2371/
%R 10.46298/dmtcs.2371
%G en
%F DMTCS_2013_special_264_a55
Dalal, Avinash J.; Morse, Jennifer. A $t$-generalization for Schubert Representatives of the Affine Grassmannian. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2371. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2371/

Cité par Sources :