The number of $k$-parallelogram polyominoes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

A convex polyomino is $k$-$\textit{convex}$ if every pair of its cells can be connected by means of a $\textit{monotone path}$, internal to the polyomino, and having at most $k$ changes of direction. The number $k$-convex polyominoes of given semi-perimeter has been determined only for small values of $k$, precisely $k=1,2$. In this paper we consider the problem of enumerating a subclass of $k$-convex polyominoes, precisely the $k$-$\textit{convex parallelogram polyominoes}$ (briefly, $k$-$\textit{parallelogram polyominoes}$). For each $k \geq 1$, we give a recursive decomposition for the class of $k$-parallelogram polyominoes, and then use it to obtain the generating function of the class, which turns out to be a rational function. We are then able to express such a generating function in terms of the $\textit{Fibonacci polynomials}$.
@article{DMTCS_2013_special_264_a54,
     author = {Battaglino, Daniela and F\'edou, Jean-Marc and Rinaldi, Simone and Socci, Samanta},
     title = {The number of $k$-parallelogram polyominoes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2370/}
}
TY  - JOUR
AU  - Battaglino, Daniela
AU  - Fédou, Jean-Marc
AU  - Rinaldi, Simone
AU  - Socci, Samanta
TI  - The number of $k$-parallelogram polyominoes
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2370/
DO  - 10.46298/dmtcs.2370
LA  - en
ID  - DMTCS_2013_special_264_a54
ER  - 
%0 Journal Article
%A Battaglino, Daniela
%A Fédou, Jean-Marc
%A Rinaldi, Simone
%A Socci, Samanta
%T The number of $k$-parallelogram polyominoes
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2370/
%R 10.46298/dmtcs.2370
%G en
%F DMTCS_2013_special_264_a54
Battaglino, Daniela; Fédou, Jean-Marc; Rinaldi, Simone; Socci, Samanta. The number of $k$-parallelogram polyominoes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2370. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2370/

Cité par Sources :