BERGMAN under MS-DOS and Anick's resolution
Discrete mathematics & theoretical computer science, Tome 1 (1997).

Voir la notice de l'article provenant de la source Episciences

Noncommutative algebras, defined by the generators and relations, are considered. The definition and main results connected with the Gröbner basis, Hilbert series and Anick's resolution are formulated. Most attention is paid to universal enveloping algebras. Four main examples illustrate the main concepts and ideas. Algorithmic problems arising in the calculation of the Hilbert series are investigated. The existence of finite state automata, defining thebehaviour of the Hilbert series, is discussed. The extensions of the BERGMAN package for IBM PC compatible computers are described. A table is provided permitting a comparison of the effectiveness of the calculations in BERGMAN with the other systems.
@article{DMTCS_1997_1_a6,
     author = {Cojocaru, S. and Ufnarovski, V.},
     title = {BERGMAN under {MS-DOS} and {Anick's} resolution},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {1},
     year = {1997},
     doi = {10.46298/dmtcs.237},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.237/}
}
TY  - JOUR
AU  - Cojocaru, S.
AU  - Ufnarovski, V.
TI  - BERGMAN under MS-DOS and Anick's resolution
JO  - Discrete mathematics & theoretical computer science
PY  - 1997
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.237/
DO  - 10.46298/dmtcs.237
LA  - en
ID  - DMTCS_1997_1_a6
ER  - 
%0 Journal Article
%A Cojocaru, S.
%A Ufnarovski, V.
%T BERGMAN under MS-DOS and Anick's resolution
%J Discrete mathematics & theoretical computer science
%D 1997
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.237/
%R 10.46298/dmtcs.237
%G en
%F DMTCS_1997_1_a6
Cojocaru, S.; Ufnarovski, V. BERGMAN under MS-DOS and Anick's resolution. Discrete mathematics & theoretical computer science, Tome 1 (1997). doi : 10.46298/dmtcs.237. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.237/

Cité par Sources :