Convolution Powers of the Identity
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

We study convolution powers $\mathtt{id}^{\ast n}$ of the identity of graded connected Hopf algebras $H$. (The antipode corresponds to $n=-1$.) The chief result is a complete description of the characteristic polynomial - both eigenvalues and multiplicity - for the action of the operator $\mathtt{id}^{\ast n}$ on each homogeneous component $H_m$. The multiplicities are independent of $n$. This follows from considering the action of the (higher) Eulerian idempotents on a certain Lie algebra $\mathfrak{g}$ associated to $H$. In case $H$ is cofree, we give an alternative (explicit and combinatorial) description in terms of palindromic words in free generators of $\mathfrak{g}$. We obtain identities involving partitions and compositions by specializing $H$ to some familiar combinatorial Hopf algebras.
@article{DMTCS_2013_special_264_a49,
     author = {Aguiar, Marcelo and Lauve, Aaron},
     title = {Convolution {Powers} of the {Identity}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2365},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2365/}
}
TY  - JOUR
AU  - Aguiar, Marcelo
AU  - Lauve, Aaron
TI  - Convolution Powers of the Identity
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2365/
DO  - 10.46298/dmtcs.2365
LA  - en
ID  - DMTCS_2013_special_264_a49
ER  - 
%0 Journal Article
%A Aguiar, Marcelo
%A Lauve, Aaron
%T Convolution Powers of the Identity
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2365/
%R 10.46298/dmtcs.2365
%G en
%F DMTCS_2013_special_264_a49
Aguiar, Marcelo; Lauve, Aaron. Convolution Powers of the Identity. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2365. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2365/

Cité par Sources :