Rational Catalan Combinatorics: The Associahedron
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

Each positive rational number $x>0$ can be written $\textbf{uniquely}$ as $x=a/(b-a)$ for coprime positive integers 0<$a$<$b$. We will identify $x$ with the pair $(a,b)$. In this extended abstract we use $\textit{rational Dyck paths}$ to define for each positive rational $x>0$ a simplicial complex $\mathsf{Ass} (x)=\mathsf{Ass} (a,b)$ called the $\textit{rational associahedron}$. It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the $\textit{rational Catalan number}$ $\mathsf{Cat} (x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)! }{ a! b!}.$ The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its Fuss-Catalan generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that $\mathsf{Ass} (a,b)$ is shellable and give nice product formulas for its $h$-vector (the $\textit{rational Narayana numbers}$) and $f$-vector (the $\textit{rational Kirkman numbers}$). We define $\mathsf{Ass} (a,b)$ .
@article{DMTCS_2013_special_264_a39,
     author = {Armstrong, Drew and Rhoades, Brendon and Williams, Nathan},
     title = {Rational {Catalan} {Combinatorics:} {The} {Associahedron}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2355},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2355/}
}
TY  - JOUR
AU  - Armstrong, Drew
AU  - Rhoades, Brendon
AU  - Williams, Nathan
TI  - Rational Catalan Combinatorics: The Associahedron
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2355/
DO  - 10.46298/dmtcs.2355
LA  - en
ID  - DMTCS_2013_special_264_a39
ER  - 
%0 Journal Article
%A Armstrong, Drew
%A Rhoades, Brendon
%A Williams, Nathan
%T Rational Catalan Combinatorics: The Associahedron
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2355/
%R 10.46298/dmtcs.2355
%G en
%F DMTCS_2013_special_264_a39
Armstrong, Drew; Rhoades, Brendon; Williams, Nathan. Rational Catalan Combinatorics: The Associahedron. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2355. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2355/

Cité par Sources :