Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

Let $\alpha$ be a string over $\mathbb{Z}_q$, where $q = 2^d$. The $j$-th elementary symmetric function evaluated at $\alpha$ is denoted $e_j(\alpha)$ . We study the cardinalities $S_q(m;\mathcal{T} _1,\mathcal{T} _2,\ldots,\mathcal{T} _t)$ of the set of length $m$ strings for which $e_j(\alpha) = \tau _i$. The $\textit{profile}$ k$(\alpha) = 〈k_1,k_2,\ldots,k_(q-1) 〉$ of a string $\alpha$ is the sequence of frequencies with which each letter occurs. The profile of $\alpha$ determines $e_j(\alpha)$ , and hence $S_q$. Let $h_n$ : $\mathbb{Z}_{2^{n+d-1}}^{(q-1)}$ $\mapsto \mathbb{Z}_{2^d} [z] $ mod $ z^{2^n}$ be the map that takes k$(\alpha)$ mod $2^{n+d-1}$ to the polynomial $1+ e_1(\alpha) z + e_2(\alpha) z^2 + ⋯+ e_{2^n-1}(\alpha)$ $z^{2^{n-1}}$. We show that $h_n$ is a group homomorphism and establish necessary conditions for membership in the kernel for fixed $d$. The kernel is determined for $d$ = 2,3. The range of $h_n$ is described for $d$ = 2. These results are used to efficiently compute $S_4(m;\mathcal{T} _1,\mathcal{T} _2,\ldots,\mathcal{T} _t)$ for $d$ = 2 and the number of complete factorizations of certain polynomials.
@article{DMTCS_2013_special_264_a36,
     author = {Miers, Charles Robert and Ruskey, Franck},
     title = {Counting strings over $\mathbb{Z}2^d$ with {Given} {Elementary} {Symmetric} {Function} {Evaluations}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2352},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/}
}
TY  - JOUR
AU  - Miers, Charles Robert
AU  - Ruskey, Franck
TI  - Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/
DO  - 10.46298/dmtcs.2352
LA  - en
ID  - DMTCS_2013_special_264_a36
ER  - 
%0 Journal Article
%A Miers, Charles Robert
%A Ruskey, Franck
%T Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/
%R 10.46298/dmtcs.2352
%G en
%F DMTCS_2013_special_264_a36
Miers, Charles Robert; Ruskey, Franck. Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2352. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/

Cité par Sources :