Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2013_special_264_a36, author = {Miers, Charles Robert and Ruskey, Franck}, title = {Counting strings over $\mathbb{Z}2^d$ with {Given} {Elementary} {Symmetric} {Function} {Evaluations}}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)}, year = {2013}, doi = {10.46298/dmtcs.2352}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/} }
TY - JOUR AU - Miers, Charles Robert AU - Ruskey, Franck TI - Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations JO - Discrete mathematics & theoretical computer science PY - 2013 VL - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/ DO - 10.46298/dmtcs.2352 LA - en ID - DMTCS_2013_special_264_a36 ER -
%0 Journal Article %A Miers, Charles Robert %A Ruskey, Franck %T Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations %J Discrete mathematics & theoretical computer science %D 2013 %V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/ %R 10.46298/dmtcs.2352 %G en %F DMTCS_2013_special_264_a36
Miers, Charles Robert; Ruskey, Franck. Counting strings over $\mathbb{Z}2^d$ with Given Elementary Symmetric Function Evaluations. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2352. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2352/
Cité par Sources :