The Robinson―Schensted Correspondence and $A_2$-webs
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.
@article{DMTCS_2013_special_264_a33,
     author = {Housley, Matthew and Russell, Heather M. and Tymoczko, Julianna},
     title = {The {Robinson{\textemdash}Schensted} {Correspondence} and $A_2$-webs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2349/}
}
TY  - JOUR
AU  - Housley, Matthew
AU  - Russell, Heather M.
AU  - Tymoczko, Julianna
TI  - The Robinson―Schensted Correspondence and $A_2$-webs
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2349/
DO  - 10.46298/dmtcs.2349
LA  - en
ID  - DMTCS_2013_special_264_a33
ER  - 
%0 Journal Article
%A Housley, Matthew
%A Russell, Heather M.
%A Tymoczko, Julianna
%T The Robinson―Schensted Correspondence and $A_2$-webs
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2349/
%R 10.46298/dmtcs.2349
%G en
%F DMTCS_2013_special_264_a33
Housley, Matthew; Russell, Heather M.; Tymoczko, Julianna. The Robinson―Schensted Correspondence and $A_2$-webs. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2349. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2349/

Cité par Sources :