The combinatorics of CAT(0) cubical complexes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

Given a reconfigurable system $X$, such as a robot moving on a grid or a set of particles traversing a graph without colliding, the possible positions of $X$ naturally form a cubical complex $\mathcal{S}(X)$. When $\mathcal{S}(X)$ is a CAT(0) space, we can explicitly construct the shortest path between any two points, for any of the four most natural metrics: distance, time, number of moves, and number of steps of simultaneous moves. CAT(0) cubical complexes are in correspondence with posets with inconsistent pairs (PIPs), so we can prove that a state complex $\mathcal{S}(X)$ is CAT(0) by identifying the corresponding PIP. We illustrate this very general strategy with one known and one new example: Abrams and Ghrist's ``positive robotic arm" on a square grid, and the robotic arm in a strip. We then use the PIP as a combinatorial ``remote control" to move these robots efficiently from one position to another.
@article{DMTCS_2013_special_264_a32,
     author = {Ardila, Federico and Baker, Tia and Yatchak, Rika},
     title = {The combinatorics of {CAT(0)} cubical complexes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2348/}
}
TY  - JOUR
AU  - Ardila, Federico
AU  - Baker, Tia
AU  - Yatchak, Rika
TI  - The combinatorics of CAT(0) cubical complexes
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2348/
DO  - 10.46298/dmtcs.2348
LA  - en
ID  - DMTCS_2013_special_264_a32
ER  - 
%0 Journal Article
%A Ardila, Federico
%A Baker, Tia
%A Yatchak, Rika
%T The combinatorics of CAT(0) cubical complexes
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2348/
%R 10.46298/dmtcs.2348
%G en
%F DMTCS_2013_special_264_a32
Ardila, Federico; Baker, Tia; Yatchak, Rika. The combinatorics of CAT(0) cubical complexes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2348. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2348/

Cité par Sources :