Generation modulo the action of a permutation group
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an isomorphism. In this paper, we present the full development of a generation engine by describing the related theory, establishing a mathematical and practical complexity, and exposing some benchmarks. We next show two applications to effective invariant theory and effective Galois theory.
@article{DMTCS_2013_special_264_a25,
     author = {Borie, Nicolas},
     title = {Generation modulo the action of a permutation group},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2341},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2341/}
}
TY  - JOUR
AU  - Borie, Nicolas
TI  - Generation modulo the action of a permutation group
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2341/
DO  - 10.46298/dmtcs.2341
LA  - en
ID  - DMTCS_2013_special_264_a25
ER  - 
%0 Journal Article
%A Borie, Nicolas
%T Generation modulo the action of a permutation group
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2341/
%R 10.46298/dmtcs.2341
%G en
%F DMTCS_2013_special_264_a25
Borie, Nicolas. Generation modulo the action of a permutation group. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2341. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2341/

Cité par Sources :