A generalization of Mehta-Wang determinant and Askey-Wilson polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n×n$ determinant $\det ((a+j-i)Γ (b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $\mathrm{Pf}((j-i)Γ (b+j+i))$ with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a $q$-analogue by replacing the Gamma function by the moment sequence of the little $q$-Jacobi polynomials. On the other hand, Nishizawa has found a q-analogue of the Mehta–Wang formula. Our purpose is to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little $q$-Jacobi polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson polynomials.
@article{DMTCS_2013_special_264_a21,
     author = {Guo, Victor J. W. and Ishikawa, Masao and Tagawa, Hiroyuki and Zeng, Jiang},
     title = {A generalization of {Mehta-Wang} determinant and {Askey-Wilson} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2337/}
}
TY  - JOUR
AU  - Guo, Victor J. W.
AU  - Ishikawa, Masao
AU  - Tagawa, Hiroyuki
AU  - Zeng, Jiang
TI  - A generalization of Mehta-Wang determinant and Askey-Wilson polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2337/
DO  - 10.46298/dmtcs.2337
LA  - en
ID  - DMTCS_2013_special_264_a21
ER  - 
%0 Journal Article
%A Guo, Victor J. W.
%A Ishikawa, Masao
%A Tagawa, Hiroyuki
%A Zeng, Jiang
%T A generalization of Mehta-Wang determinant and Askey-Wilson polynomials
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2337/
%R 10.46298/dmtcs.2337
%G en
%F DMTCS_2013_special_264_a21
Guo, Victor J. W.; Ishikawa, Masao; Tagawa, Hiroyuki; Zeng, Jiang. A generalization of Mehta-Wang determinant and Askey-Wilson polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2337. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2337/

Cité par Sources :