Root-theoretic Young Diagrams, Schubert Calculus and Adjoint Varieties
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

Root-theoretic Young diagrams are a conceptual framework to discuss existence of a root-system uniform and manifestly non-negative combinatorial rule for Schubert calculus. Our main results use them to obtain formulas for (co)adjoint varieties of classical Lie type. This case is the simplest after the previously solved (co)minuscule family. Yet our formulas possess both uniform and non-uniform features.
@article{DMTCS_2013_special_264_a2,
     author = {Searles, Dominic and Yong, Alexander},
     title = {Root-theoretic {Young} {Diagrams,} {Schubert} {Calculus} and {Adjoint} {Varieties}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.2318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2318/}
}
TY  - JOUR
AU  - Searles, Dominic
AU  - Yong, Alexander
TI  - Root-theoretic Young Diagrams, Schubert Calculus and Adjoint Varieties
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2318/
DO  - 10.46298/dmtcs.2318
LA  - en
ID  - DMTCS_2013_special_264_a2
ER  - 
%0 Journal Article
%A Searles, Dominic
%A Yong, Alexander
%T Root-theoretic Young Diagrams, Schubert Calculus and Adjoint Varieties
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2318/
%R 10.46298/dmtcs.2318
%G en
%F DMTCS_2013_special_264_a2
Searles, Dominic; Yong, Alexander. Root-theoretic Young Diagrams, Schubert Calculus and Adjoint Varieties. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.2318. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2318/

Cité par Sources :