Edge Disjoint Hamilton Cycles in Knödel Graphs
Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 3.

Voir la notice de l'article provenant de la source Episciences

The vertices of the Knödel graph $W_{\Delta, n}$ on $n \geq 2$ vertices, $n$ even, and of maximum degree $\Delta, 1 \leq \Delta \leq \lfloor log_2(n) \rfloor$, are the pairs $(i,j)$ with $i=1,2$ and $0 \leq j \leq \frac{n}{2} -1$. For $0 \leq j \leq \frac{n}{2} -1$, there is an edge between vertex $(1,j)$ and every vertex $(2,j + 2^k - 1 (mod \frac{n}{2}))$, for $k=0,1,2, \ldots , \Delta -1$. Existence of a Hamilton cycle decomposition of $W_{k, 2k}, k \geq 6$ is not yet known, see Discrete Appl. Math. 137 (2004) 173-195. In this paper, it is shown that the $k$-regular Knödel graph $W_{k,2k}, k \geq 6$ has $ \lfloor \frac{k}{2} \rfloor - 1$ edge disjoint Hamilton cycles.
@article{DMTCS_2016_17_3_a4,
     author = {Paulraja, Palanivel Subramania Nadar and Sampath Kumar, S},
     title = {Edge {Disjoint} {Hamilton} {Cycles} in {Kn\"odel} {Graphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2015-2016},
     doi = {10.46298/dmtcs.2148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2148/}
}
TY  - JOUR
AU  - Paulraja, Palanivel Subramania Nadar
AU  - Sampath Kumar, S
TI  - Edge Disjoint Hamilton Cycles in Knödel Graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2148/
DO  - 10.46298/dmtcs.2148
LA  - en
ID  - DMTCS_2016_17_3_a4
ER  - 
%0 Journal Article
%A Paulraja, Palanivel Subramania Nadar
%A Sampath Kumar, S
%T Edge Disjoint Hamilton Cycles in Knödel Graphs
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2148/
%R 10.46298/dmtcs.2148
%G en
%F DMTCS_2016_17_3_a4
Paulraja, Palanivel Subramania Nadar; Sampath Kumar, S. Edge Disjoint Hamilton Cycles in Knödel Graphs. Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 3. doi : 10.46298/dmtcs.2148. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2148/

Cité par Sources :