The irregularity of two types of trees
Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 3.

Voir la notice de l'article provenant de la source Episciences

The irregularity of a graph $G$ is defined as the sum of weights $|d(u)-d(v)|$ of all edges $uv$ of $G$, where $d(u)$ and $d(v)$ are the degrees of the vertices $u$ and $v$ in $G$, respectively. In this paper, some structural properties on trees with maximum (or minimum) irregularity among trees with given degree sequence and trees with given branching number are explored, respectively. Moreover, the corresponding trees with maximum (or minimum) irregularity are also found, respectively.
@article{DMTCS_2016_17_3_a2,
     author = {Jianxi, Li and Liu, Yang and Shiu, Wai},
     title = {The irregularity of two types of trees},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2015-2016},
     doi = {10.46298/dmtcs.2146},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2146/}
}
TY  - JOUR
AU  - Jianxi, Li
AU  - Liu, Yang
AU  - Shiu, Wai
TI  - The irregularity of two types of trees
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2146/
DO  - 10.46298/dmtcs.2146
LA  - en
ID  - DMTCS_2016_17_3_a2
ER  - 
%0 Journal Article
%A Jianxi, Li
%A Liu, Yang
%A Shiu, Wai
%T The irregularity of two types of trees
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2146/
%R 10.46298/dmtcs.2146
%G en
%F DMTCS_2016_17_3_a2
Jianxi, Li; Liu, Yang; Shiu, Wai. The irregularity of two types of trees. Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 3. doi : 10.46298/dmtcs.2146. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2146/

Cité par Sources :